ЭУМК Компьютерное моделирование
Лекции: Введение | Л-1: Краткая история компьютерной графики. Основные понятия о машинной графике и основные задачи компьютерной графики. Классификация направлений и сферы применения компьютерной графики. Задачи курса | Л-2: Программное обеспечение для создания, просмотра и обработки графической информации | Л-3: Текстовый редактор. Работа с текстом (простой и фигурный, вдоль кривой, эффекты для текста) | Л-4: Презентация и анимация графических и текстовых объектов. Средства организации чертежа (система координат, единицы измерения, слои, графические примитивы) | Л-5: Основные понятия о растровом и векторном изображении. Прикладное назначение программ для графического отображения физических процессов. Виды программного обеспечения для графики математического моделирования | Л-6: Виды графических программ векторной графики: Microsoft Visio, Corеl Draw, АutoCAD | Л-7: Окна программ векторной графики. Особенности импорта и экспорта изображений и макетов | Л-8: Панель инструментов программы. Библиотека элементов векторной графики | Л-9: Системы цветов в компьютерной графике: HSB, HSL, RGB, CMYK | Л-10: Методика рисования простых фигур и векторный способ формирования графических объектов | Л-11: Линии как объект векторной графики и их свойства | Л-12: Виды графических программ растровой графики: Pаint, Adobe Photoshop. Понятие слоя, создание изображения со слоями; копирование, перемещение, наложение, удаление слоев | Л-13: Двумерные (2D) и трехмерные (3D) геометрические преобразования в компьютерной графике | Л-14: Масштабирование изображений. Панели инструментов программ Pаint, Adobe Photoshop и др. | Л-15: Растровый способ формирования графических образов | Л-16: Вставка и редактирование рисунков. Геометрическое моделирование, преобразования растровых и векторных изображений | Л-17: Выделение и трансформация областей. Работа с текстом | Л-18: Тональная и цветовая коррекция и фильтры. Маски, каналы и ретушь | Л-19: Смешивание слоев, эффекты и стили слоев | Л-20: Виды систем графического моделирования: Mathсad, MatLab. Интерфейс пользователя систем Mathсad и MatLab | Л-21: Работа со встроенными функциями, массивами, векторами и матрицами | Л-22: Элементы графической визуализации. Графическая визуализация вычислений — построение графиков функций | Л-23: Основы работы с векторами и матрицами. Палитры математических знаков и документы Mathсad | Дополнительные материалы: Практические работы Терминологический словарь Самостоятельные работы студента Методические рекомендации/указания Контрольные измерительные материалы Литература |
|
Лекция 23: Основы работы с векторами и матрицами. Палитры математических знаков и документы Mathсad
|
|
Страницы: 1 | 2 | 3 | 4 | 5 | 6 | | |
Содержание
Векторизация массивовВекторная алгебра Mathcad включает несколько необычный оператор, который называется оператором векторизации (vectorize operator). Этот оператор предназначен, как правило, для работы с массивами. Он позволяет провести однотипную операцию над всеми элементами массива (т. е. матрицы или вектора), упрощая тем самым программирование циклов. Например, иногда требуется умножить каждый элемент одного вектора на соответствующий элемент другого вектора. Непосредственно такой операции в Mathcad нет, но ее легко осуществить с помощью векторизации (листинг 23.15). Для этого:
Символьные операции с матрицамиВсе матричные и векторные операторы, о которых шла речь выше, допустимо использовать в символьных вычислениях. Мощь символьных операций заключается в возможности проводить их не только над конкретными числами, но и над переменными. Несколько примеров приведены в листинге 23.17. Листинг 23.17. Примеры символьных операций над векторами и матрицами Смело используйте символьный процессор в качестве мощного математического справочника. Например, когда Вы хотите вспомнить какое-либо определение из области линейной алгебры (так, правила перемножения и обращения матриц показаны в первых строках листинга 23.17). Матричная функцияПеречислим основные встроенные функции, предназначенные для облегчения работы с векторами и матрицами. Они нужны для создания матриц, слияния и выделения части матриц, получения основных свойств матриц и т.п.Функции создания матрицСамым наглядным способом создания матрицы или вектора является применение первой кнопки панели инструментов Matrix (Матрицы). Однако в большинстве случаев, в частности при программировании сложных проектов, удобнее бывает создавать массивы с помощью встроенных функций. Определение элементов матрицы через функцию matrix(M,N,f) — создание матрицы размера MXN, каждый i,j элемент которой есть f (i, j) (листинг 23.18); м — количество строк; N — количество столбцов; f (i, j) — функция.Листинг 23.18. Создание матрицы Для создания матриц имеются еще две специфические функции, применяемые, в основном, для быстрого и эффектного представления каких-либо зависимостей в виде трехмерных графиков (типа поверхности или пространственной кривой). Все их аргументы, кроме первого (функции), необязательны. Рассмотрим первую из функций. СгеаtеSрасе(F(или f1, f2, f3) , t0, t1, tgrid, fmap) — создание вложенного массива, представляющего х-, у- и z-координаты параметрической пространственной кривой, заданной функцией р:
Рис. 23.3. Использование функции CreateSpace с разным набором параметров Пример использования функции CreateSpace показан на рис. 23.3. Заметьте, для построения графика спирали не потребовалось никакого дополнительного кода, кроме определения параметрической зависимости в вектор-функции F! Функция создания матрицы для графика трехмерной поверхности устроена совершенно аналогично, за тем исключением, что для определения поверхности требуется не одна, а две переменных. Пример ее использования иллюстрирует рис. 23.4. Рис. 23.4. Использование функции CreateMesh с разным набором параметров CreateMesh(F(или g, или f1, f2, f3) , s0, s1, t0, t1, sgrid, tgrid, fmap) - создание вложенного массива, представляющего х-, у- и z-координаты параметрической поверхности, заданной функцией F:
Примеры вложенных массивов, которые создаются функциями createMesh и createspace, приведены в листинге 23.19. Каждая матрица из числа трех вложенных матриц, образующих массив, определяет х-, у- и z-координаты точек поверхности или кривой, соответственно. Листинг 23.19. Результат действия функций CreateMeeh и CreateSpace (рис. 23.3 - 23.4) Создание матриц специального вида В Mathcad легко создать матрицы определенного вида с помощью одной из встроенных функций. Примеры использования этих функций приведены в листинге 23.20.
Размер NXM матрицы А для функции geninv должен быть таким, чтобы N>M. Листинг 23.20. Создание матриц специального вида
|
|
Страницы: 1 | 2 | 3 | 4 | 5 | 6 | | |
Лекция 23: Основы работы с векторами и матрицами. Палитры математических знаков и документы Mathсad |