Основные понятия и формулы
Комбинаторикой называется раздел математики, изучающий вопрос о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов).
Правило умножения (основная формула комбинаторики)
Общее число способов, которыми можно выбрать по одному элементу из каждой группы и расставить их в определенном порядке (то есть получить упорядоченную совокупность
), равно:
Пример 1
Монету подбросили 3 раза. Сколько различных результатов бросаний можно ожидать?
Решение
Первая монета имеет альтернативы – либо орел, либо решка. Для второй монеты также есть
альтернативы и т.д., т.е.
.
Искомое количество способов:
Правило сложения
Если любые две группы и
не имеют общих элементов, то выбор одного элемента или из
, или из
, …или из
можно осуществить
способами.
Пример 2
На полке 30 книг, из них 20 математических, 6 технических и 4 экономических. Сколько существует способов выбора одной математической или одной экономической книги.
Решение
Математическая книга может быть выбрана способами, экономическая -
способами.
По правилу суммы существует способа выбора математической или экономической книги.
Размещения и перестановки
Размещения – это упорядоченные совокупности элементов, отличающиеся друг от друга либо составом, либо порядком элементов.
Размещения без повторений, когда отобранный элемент перед отбором следующего не возвращается в генеральную совокупность. Такой выбор называется последовательным выбором без возвращения, а его результат – размещением без повторений из элементов по
.
Число различных способов, которыми можно произвести последовательный выбор без возвращения элементов из генеральной совокупности объема
, равно:
Пример 3
Расписание дня состоит из 5 различных уроков. Определите число вариантов расписания при выборе из 11 дисциплин.
Решение
Каждый вариант расписания представляет набор 5 дисциплин из 11, отличающихся от других вариантов как составом, так и порядком следования. поэтому:
Перестановки – это упорядоченные совокупности, отличающиеся друг от друга только порядком элементов. Число всех перестановок множества из элементов равно
Пример 4
Сколькими способами можно рассадить 4 человек за одним столом?
Решение
Каждый вариант рассадки отличается только порядком участников, то есть является перестановкой из 4 элементов:
Размещения с повторениями, когда отобранный элемент перед отбором следующего возвращается в генеральную совокупность. Такой выбор называется последовательным выбором с возвращением, а его результат - размещением с повторениями из элементов по
.
Общее число различных способов, которыми можно произвести выбор с возвращением элементов из генеральной совокупности объема
, равно
Пример 5
Лифт останавливается на 7 этажах. Сколькими способами могут выйти на этих этажах 6 пассажиров, находящихся в кабине лифта?
Решение
Каждый из способов распределения пассажиров по этажам представляет собой комбинацию 6 пассажиров по 7 этажам, отличающуюся от других комбинаций как составом, так и их порядком. Так как одном этаже может выйти как один, так и несколько пассажиров, то одни и те же пассажиры могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 7 элементов по 6:
Сочетания
Сочетаниями из n элементов по k называются неупорядоченные совокупности, отличающиеся друг от друга хотя бы одним элементом.
Пусть из генеральной совокупности берется сразу несколько элементов (либо элементы берут последовательно, но порядок их появления не учитывается). В результате такого одновременного неупорядоченного выбора элементов из генеральной совокупности объема
получаются комбинации, которые называются сочетаниями без повторений из
элементов по
.
Число сочетаний из элементов по
равно:
Пример 6
В ящике 9 яблок. Сколькими способами можно выбрать 3 яблока из ящика?
Решение
Каждый вариант выбора состоит из 3 яблок и отличается от других только составом, то есть представляет собой сочетания без повторений из 9 элементов:
Количество способов, которыми можно выбрать 3 яблока из 9:
Пусть из генеральной совокупности объема выбирается
элементов, один за другим, причем каждый отобранный элемент перед отбором следующего возвращается в генеральную совокупность. При этом ведется запись, какие элементы появились и сколько раз, однако порядок их появления не учитывается. Получившиеся совокупности называются сочетаниями с повторениями из
элементов по
.
Число сочетаний с повторениями из элементов по
:
Пример 7
На почте продают открытки 3 видов. Сколькими способами можно купить 6 открыток?
Это задача на отыскание числа сочетаний с повторениями из 3 по 6:
Разбиение множества на группы
Пусть множество из различных элементов разбивается на
групп так, то в первую группу попадают
элементов, во вторую -
элементов, в
-ю группу -
элементов, причем
. Такую ситуацию называют разбиением множества на группы.
Число разбиений на групп, когда в первую попадают
элементов, во вторую -
элементов, в k-ю группу -
элементов, равно:
Пример 8
Группу из 16 человек требуется разбить на три подгруппы, в первой из которых должно быть 5 человек, во второй – 7 человек, в третьей – 4 человека. Сколькими способами это можно сделать?
Решение
Здесь
Число разбиений на 3 подгруппы: